Vertebrate-specific sequences in the gephyrin E-domain regulate cytosolic aggregation and postsynaptic clustering.
نویسندگان
چکیده
Gephyrin is a multifunctional protein contributing to molybdenum cofactor (Moco) synthesis and postsynaptic clustering of glycine and GABA(A) receptors. It contains three major functional domains (G-C-E) and forms cytosolic aggregates and postsynaptic clusters by unknown mechanisms. Here, structural determinants of gephyrin aggregation and clustering were investigated by neuronal transfection of EGFP-tagged deletion and mutant gephyrin constructs. EGFP-gephyrin formed postsynaptic clusters containing endogenous gephyrin and GABA(A)-receptors. Isolated GC- or E-domains failed to aggregate and exerted dominant-negative effects on endogenous gephyrin clustering. A construct interfering with intermolecular E-domain dimerization readily auto-aggregated but showed impaired postsynaptic clustering. Finally, two mutant constructs with substitution of vertebrate-specific E-domain sequences with homologue bacterial MoeA sequences uncovered a region crucial for gephyrin clustering. One construct failed to aggregate, but retained Moco biosynthesis capacity, demonstrating the independence of gephyrin enzymatic activity and aggregation. Reinserting two vertebrate-specific residues restored gephyrin aggregation and increased formation of postsynaptic clusters containing GABA(A) receptors at the expense of PSD-95 clusters - a marker of glutamatergic synapses. These results underscore the key role of specific E-domain regions distinct from the known dimerization interface for controlling gephyrin aggregation and postsynaptic clustering and suggest that formation of gephyrin clusters influences the homeostatic balance between inhibitory and excitatory synapses.
منابع مشابه
Extracellular signal-regulated kinase and glycogen synthase kinase 3β regulate gephyrin postsynaptic aggregation and GABAergic synaptic function in a calpain-dependent mechanism.
Molecular mechanisms of plasticity at GABAergic synapses are currently poorly understood. To identify signaling cascades that converge onto GABAergic postsynaptic density proteins, we performed MS analysis using gephyrin isolated from rat brain and identified multiple novel phosphorylation and acetylation residues on gephyrin. Here, we report the characterization of one of these phosphoresidues...
متن کاملStructural basis of dynamic glycine receptor clustering by gephyrin.
Gephyrin is a bi-functional modular protein involved in molybdenum cofactor biosynthesis and in postsynaptic clustering of inhibitory glycine receptors (GlyRs). Here, we show that full-length gephyrin is a trimer and that its proteolysis in vitro causes the spontaneous dimerization of its C-terminal region (gephyrin-E), which binds a GlyR beta-subunit-derived peptide with high and low affinity....
متن کاملPalmitoylation of Gephyrin Controls Receptor Clustering and Plasticity of GABAergic Synapses
Postsynaptic scaffolding proteins regulate coordinated neurotransmission by anchoring and clustering receptors and adhesion molecules. Gephyrin is the major instructive molecule at inhibitory synapses, where it clusters glycine as well as major subsets of GABA type A receptors (GABAARs). Here, we identified palmitoylation of gephyrin as an important mechanism of strengthening GABAergic synaptic...
متن کاملCollybistin activation by GTP-TC10 enhances postsynaptic gephyrin clustering and hippocampal GABAergic neurotransmission.
In many brain regions, gephyrin and GABAA receptor clustering at developing inhibitory synapses depends on the guanine nucleotide exchange factor collybistin (Cb). The vast majority of Cb splice variants contain an autoinhibitory src homology 3 domain, and several synaptic proteins are known to bind to this SH3 domain and to thereby activate gephyrin clustering. However, many functional GABAerg...
متن کاملCollybistin splice variants differentially interact with gephyrin and Cdc42 to regulate gephyrin clustering at GABAergic synapses.
Collybistin (CB) is a guanine-nucleotide-exchange factor (GEF) selectively activating Cdc42. CB mutations cause X-linked mental retardation due to defective clustering of gephyrin, a postsynaptic protein associated with both glycine and GABA(A) receptors. Using a combination of biochemistry and cell biology we provide novel insights into the roles of the CB2 splice variants, CB2(SH3+) and CB2(S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 120 Pt 8 شماره
صفحات -
تاریخ انتشار 2007